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A general twodimensional theory is presented for the choice of charge-sharing 
schemes in particle-mesh algorithms. An ordered hierarchy of schemes is obtained in 
which the lowest orders are represented by the familiar nearest-grid-point (NGP) and 
cloud-in-cell (CIC) schemes. Of the higher order nine-point charge-sharing schemes the 
triangular-shaped and gaussian-shaped cloud are favored. The theory is also given for 
the shaping of the short-range force law by the introduction of potential-correction 
coefficients which modify the multiplying factor used in the calculation of the potential 
by Fourier transform methods. Empirical results are given demonstrating the correctness 
of the theory and showing that the angular anisotropy of the force law can be reduced 
from 50% for NGP or CIC to less than the 0.5 % by the above methods. 

1. INTRODUCTION 

The economy of representing the dynamical central force interaction of an 
ensembleof particles on a mesh rather than evaluating the sum of interparticle forces 
at each time step, is now well established [I]. In this paper, we shall be concerned 
only with the quasistatic type of particle-mesh calculation, where potentials are 
only implicit functions of time. The earliest and simplest of the particle-mesh 
schemes devised is the nearest-grid-point (NGP) scheme [2]. The total charge 
of each particle is assigned to the center of the cell in which it lies for the purpose 
of evaluating charge sums and forces. In consequence, the particle has an effective 
size equal to that of the cell, and experiences no self-force. However, the speed 
of the algorithm is, in many applications, outweighed by poor energy conservation 
[3] and nonphysical grid interactions [4-71 resulting from the coarseness of the 
force representation. 

Several variations on the theme set by NGP have appeared in the literature; 
Morse and Nielsen, in their particle-in-cell scheme [8, 91, used bilinear inter- 
polation on the electric field for particle pushing, together with inverse inter- 
polation (area weighting) on charge assignments. Birdsall et al. [IO] devised an 
equivalent scheme, the cloud-in-cell (CIC) method, where the interpolating function 
is “carried” with the particle, leading to the useful concept of the finite-sized 
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particle. A compromise between the speed of NGP and the improved precision 
of CIC has been used by Orens et al. [I 11, where the charge assignment is quantized 
by using a subcell containing a mesh of precalculated weights. Kruer et al. [12, 131 
have introduced the use of multipole expansions about grid points, giving an 
interesting and powerful method of devising improvements to NGP. Lewis [14,15] 
has developed an elegant Lagrangian formulation for generating schemes which 
have energy constants in the limit At -+ 0; unfortunately, his schemes do not in 
practice show the clear-cut advantages that the theory suggested [16]. 

A new approach to the particle-mesh calculations is introduced in Part I of this 
paper. The concept of the finite-sized particle [2] and a splitting of the problem into 
a “short-range” and a “long-range” part are central to the viewpoint adopted. 
The regular mesh is treated as an array of expansion centers rather than as a finite- 
difference mesh, and the finite-difference approximation to the point differential 
(Poisson’s) potential relationship is replaced by an action-at-a-distance expression 
for the potential. 

In Sections 2 and 3, we shall see that the error in the force between particles of 
large separation is reduced by suitably choosing the charge-sharing scheme. 
Section 4 is concerned with the short-range force. There, it is show how the Green’s 
function in the potential-solver may be adjusted to offset the anisotropy resulting 
from charge sharing and potential differencing. 

Empirical results are given in Part II which demonstrate the effectiveness of the 
methods described in Part I. Section 5 covers the choice of charge-sharing scheme 
and potential-solver, in order to obtain the best long-range force. The effect of 
cloud shape on the short-range force is given in Section 6. Section 7 gives the results 
obtained with the introduction of both two and eight potential-correction coeffi- 
cients. Overall it is demonstrated that the angular anisotropy of the mesh force 
can be reduced from 50 ‘A for NGP and CIC to 0.5 ‘A for the best scheme given 
here, the Quiet Particle Mesh (QPM) model. 

Part I. General Two-Dimensional Theory 

2. CHARGE-SHARING CONSTRAINTS 

Assuming coulombic forces, the field may be expressed as a function of the 
complex variable z, where z is the position of the field point. In particular, the 
field due to a cylindrical rod of charge q per unit length and of radius a located 
atz = Ois 

E,(z) = E, - iE, (1) 

= q/2%-E& /zI >a. (2) 
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The consequence of representing such a charged rod by charges assigned to 
a square mesh with spacing unity is to change the (complex) electric field to 

(3) 

where z,,t = s + it is the position of mesh point (s, t), w,,,,$z,) is the fraction of 
the charge assigned to mesh point (s’, t’) from the source charge at zO, and E,,, 
is the approximate field at mesh point (s, t). The sum on the right-hand side of (3) 
is taken over all mesh points. 

Introducing the ratio, E,‘,t’ , of the distance of mesh point (s’, t’) from the source 
point to the distance of the field from source point 

Es’ t’ = (Z,f,t’ - zo>/(zs.t - 20) (4) 

enables (3) to be written 

Es,, = E, c ws,&o) f l !,,t, s’,Y ?I=0 (5) 

for I E,‘,tf 1 < 1. 
We obtain from (5) the orthogonal expansion of the fractional error in the field: 

t’ = &t - WE, (6) 

= :I fne-in8 (7) 

where 
0 = arg(z, - z,,J. 63) 

Since 5, decays like / z. - z,,t I-%, an ordered set of independent charge-assignment 
constraints may be constructed by setting f, = 0; lz = 0, 1, 2,.... For instance, 
an A&h-order scheme has 

(9) 
n=M+l 

and charge weights chosen such that 

5, = l c W,~,t~(Zo>(Zo - z*,,t,)n I zo - Zs,t In s’,t (10) 

= 0, all n 6 [0, M]. (11) 
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The constraint equation of order n, given by setting (10) to zero, is 

c M’,,,t’(Zo) z;,,,, = z;. (12) 

The same ordering of the error as given by (9), and the same constraints as 
given by (12) arise when the long-range potential, potential energy or interparticle 
force are treated in a similar manner. In the calculation of the interparticle force 
and interparticle potential energy, the interpolation function is assumed to be 
identical to the charge weighting function in order that momentum is exactly 
conserved. 

The assumption that the field is analytic must be dropped for noncoulombic 
forces. For such forces, we denote the “true” field E, and mesh-calculated approxi- 
mate field, E,,,t, , by vectors lying in the (x, u) plane: 

Ec = J&(x, Y>, 

E,,t = c Wsr*t’(xO 2 Yo) g(s - s’, t - t’). (13) 

w,,,,(x, , yO) is the charge assigned to mesh point (s’, t’) from a charge at (x0, y,,) 
and g is the Green’s function appropriate to the particular force law. Expand (13) 
about the source to field point vector x. 

x = (s - x0 ) t - yo) (14) 
gives 

where 

E s,t c s,,t’ Ws’,t’(Xo 2 Yo) fi “;; ;;” g$ g 1 , 
%77X=0 Y 

(13 

The zero (m + IZ = 

dx = x0 - s’, 

dy = yo - t’. 
(16) 

0) and first-order (m + 12 = 1) constraints given by (15) 
coincide with those for the coulombic force. Higher-order constraints are more 
severe. For instance, to get (15) to agree with E, to second order (m + IZ = 3 for 
the leading remainder term) we require that the second-order constraint 

c ‘Vs’,t’ I Zd.t’ 12 = I 20 12 + 2c (17) s’.t’ 
be satisfied in addition to those given by n = 0, 1 in (2) and that g be chosen to 
satisfy 

g + (C/2) V2g = E, + W3), (18) 

581/16/4-3 
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where C is some constant. Setting C = $ and interpreting the Laplacian in (19) 
as the nine-point finite-difference approximation 

v2sb s,t = 9[6& + S, - 281 &.t , (19) 

where the symmetric sums S, and S, are defined as 

Sd4sJ = #Js,t+1 + h-1 + 4sfl.t + L,t 7 (20) 

S2<A,f> = A+l,t+l + 4s+*,t-I + L,t+1 + L-l (21) 

gives the spiine fitting equations through to second order. Note that with spline 
fitting schemes, the charge weights are product functions: 

ws,,(x, J4 = f(x - s)f( y - t). (22) 

All commonly used schemes fit into the system defined by the constraints given 
in this section. The general force law and the spline fitting schemes appear as a 
subset of the schemes defined by the multipole expansion used for the coulombic 
force. In all cases, higher-order constraints may be satisfied by increasing the 
number of points to which charge from each particle is assigned. 

If the computational cost of charge assignement were of little account, then a 
spline fitting scheme would be the best choice. However, to achieve an order n 
long-range force error under the spline fitting constraints requires charge 
assignment to (n + 1)2 points rather than the (2n + 1) points per particle required 
by the coulombic force law constraints (Eq. (12)). Since the physics of collisionless 
plasmas depends on the long-range interactions, the computationally cheaper 
schemes defined by (12) may represent practical alternatives, provided that the 
short-range force errors do not severely degrade collision and heating times. 

3. EXAMPLES OF CHARGE-SHARING SCHEMES 

The lowest-order charge-sharing scheme is obtained by satisfying only the IZ = 0 
constraint. This is achieved by assigning charge to the nearest grid point (NGP); 

-+tx<+, -4<y<$, 
otherwise. 

Extending charge assignment to the three nearest grid points to a particle, 
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enables the n = 0 and 1 constraints (Eq. (12)) to be satisfied. The resulting first- 
order scheme is 

wdx3 Y> = 
l-lx/; -*<ye+, -l<x<-J, *<x41, (24) 
l- iyl; -k<X<$, -l<y<-4, i<J’<l, 
0; otherwise. 

Physically, the scheme (24) may be regarded as placing all the charge at the nearest 
grid point, together with dipoles parallel to the x and y axes of strength proportional 
to 1 x 1 and 1 y 1, respectively. 

In a similar manner, we find the four-point scheme satisfying the n = 0 and 
n = 1 constraints (Eq. (12)): 

i 

4 x I, I Y I); -*<x”(+, -$<y<$, 
1 - I x I - 4 * I> 1 - I Y I); 

- -h < x < $ ) -l<y<-$, *<y41, 
11 %,&9 Y> = ,; - I y I - 4 - I x I> I Y I>; 
/ -icy<+, -l<X’(--3, +<x41, 

I ~-l~l-lYI+~~~-l~l,~-lYl~; 
-l<x<&, $<x<l, -l<y< 

0; otherwise, 

where 01 is some arbitrary function. One choice of LX, 

4 x I> I Y I> = 1 - I x I - I Y I, 

reduces (25) to the three-point scheme, while another, 

4 x I, I Y I) = (1 - I x IN - I Y I), 

reduces (25) to a bilinear function: 

(26) 

(27) 

(1 - I x IN - I Y I>; %,O(X~ Y) = lo; lx/ /(I, IYI 41, 
otherwise. (28) 

The scheme given by (28) is the linear spline charge-weighting scheme, also known 
as area weighting and the CIC scheme [9, lo]; other choices of the function a 
may prove advantageous, although what particular form it should take has not 
yet been investigated. 

Extending charge assignment to five mesh points allows the second-order 
constraints (12) to be satisfied. Alternatively, the first-order constraints may be 
satisfied, leaving two arbitrary functions to adjust the short-range force behavior. 
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In a like manner, schemes may be devised for charge sharing over six, seven or more 
mesh points, allowing progressively higher-order constraints to be accommodated. 
The problem with many of the possible schemes is that considerable effort is 
expended deciding where the odd points are to be placed, unless there is a regular 
invariant pattern of points, as in the four-point, symmetrical five-point, or nine- 
point schemes. 

A variety of schemes satisfying the lower-order terms of (12) are possible when 
charge is assigned to the nine mesh points closest to each particle. For instance, 
constraints to third order may be satisfied, leaving two free parameters to adjust 
the short-range force behavior. Alternatively, a second-order scheme using 
biquadratic charge-weighting function may be chosen: 

%& Y) = fW.0 Yh (29) 

where 

i 
1 - c - x”; - $ < x < ;- ) 

f(x) = 

1 

$(x2 - 3 I x j + 2 + c); - $ < x 4 - $ ) 4 < x < g ) (30) 
0; otherwise. 

In particular if the constant c is set to f, then (29) and (30) correspond to a finite- 
sized particle with a shape factor given by the product of triangle functions (cf. 
the product of “top-hat” functions for the CIC scheme). This scheme, the 
Triangular Shaped Cloud (TSC) scheme, when combined with the adjustment of 
the kernel in the field equation gives the quadratic spline scheme [17]. In Part II 
we shall investigate a semiempirical approach to the adjustment of the kernel 
of the field equation for arbitrary charge-sharing schemes. 

As a final example of charge-sharing scheme, we consider the nine-point 
gaussian-shaped cloud scheme, whose shape factor is 

S(x, y) = (1 /2nu2 erf2( l/(20)1/2)) exp[ -(x2 + y2)/2a2]. (31) 

Choosing different values of u leads to different constraint equations being satisfied. 
For instance, u = .40 satisfies the IZ = 0 and 1 constraints (12), while u = .54 
satisfies the II = 0 and y1 = 2 constraints (Eqs. (12) and (17)). A compromise 
choice of u = 0.455 gives a weighting function quite close to TSC over most of 
the range. This cloud which will be referred to as the GSC is used in the empirical 
comparisons of Part II. 

4. SHAPING THE FORCE LAW AT SHORT RANGE 

The mesh of potential values {+s.t] and field values {E,,,} are related to the mesh 
charge distribution by the convolution sums: 
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(32) 

Es,, = i c ds-sr,t-tw,t* 3 (33) 8’3 
where the sums (s’, t’) are taken over all mesh points. Generally, the electric field 
influence (or Green’s) function d,,t is related to the potential influence function 
G,,t, by some simple difference equation, although this is not a necessary condition. 

Using (33) we may write the force F at (x1 , vl) due to a source charge at (x, , yO): 

F=q2 c ~~~s,.t,(xt, 2 YO) ~c,,t,(x, 3 ~1) ds2-s,,t,+ . (34) s1,t,,s2,t, 
In order to represent a central force of interaction, the mesh force given by (34) 
should be a function only of the distance separating the source and field points and 
be directed along the line joining them. However, owing to the introduction of the 
mesh, there is a nonzero force perpendicular to the line of centers and the magnitude 
of the force will depend on the location of the source and field points with respect 
to the mesh, as well as on their separation. 

These nonphysical effects are most pronounced at short range and it is the 
purpose of this section to show how they may be reduced by modifying the influence 
function G, without altering the force law at long range. 

To measure the quality of the representation we introduce a reference central 
force R. A measure of how close F gets to R is given by their squared difference, 
integrated over all positions of the source and field points: 

112 

Q = jj dx, ho fj dx, 4’1 (F - W2. (35) 
-l/2 --n 

If the charge-sharing scheme is derived according to the constraints given in 
Section 2, then the integrand of (35) decays like r-2(n+1), where r is the particle 
separation and n is the order of the charge-sharing scheme. Consequently, (35) may 
be truncated with little loss of accuracy: 

112 

Q* = jj dx, dy, fi dx, d’, (F - R)2.’ (36) 
-l/2 --m 

From (33) and (34) we see that Q* is a quadratic function of the influence function 
d s.t , and hence Q* is also a quadratic function of the potential influence function 
G,,, provided that the field is obtained from the potential by differencing. Conse- 
quently for a particular charge-sharing, potential-differencing, and reference-force 
combination, there is a unique optimal set of coefficients {GzSt} which minimize Q*. 
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The adjustment of the influence function is interpreted as a shaping of the 
charged rods. The force between charges is coulombic, with a cutoff at short range 
being due to the finite diameter of the charges, i.e., the shape of the charges is 
measured by the reference force law, rather than by the charge-sharing scheme. The 
optimal set of values (Gz,} are thus those which produce a mesh expanded force 
that most accurately imitates the real force between two finite-sized charged rods. 

The advantage of this charge-shaping method over other smoothing techniques 
is that it leads to no increase in the cycle time of a particle-mesh calculation 
provided that finite Fourier transforms (FFT) are employed to solve the field 
equation. The FFT of (32) gives the harmonic equations: 

&.l = (--HZ/~,) Gdh,, , (37) 

where &,r is the transform of GSSt . 

G,,t = -$ N5e’ G,,, exp [$$- (ks + If)], 
s,t=-N/Z 

(38) 

and &,r and @ k,l are the potential and charge harmonics, respectively, for an 
N-by-N periodic square mesh with mesh spacing H. If (G,,,} and {G$,} differ only 
for 1 s 1 < m, I t I < m, and we make use of the symmetry conditions 
G-,,t = Get = G,J , the summation can be put in the convenient real form: 

G,l = G., + 2 2nks 2dt 
cs.t cos __ cos - , 

S.kO N N 

where the short-range potential correction coefficients, c,,t , are defined by 

c s,t = (2 - &,0)(2 - &,o)(G,Tt - G,,,). 

The empirical determination of the coefficients c,,~ is given in Part II, and since 
there is nothing to distinguish the x and y directions one must have cSSt = ct,8 . 
In any practical computation {Gz,} is precalculated, so the modification of the 
potential calculation is introduced via (39) with, as noted above, no effect on the 
cycle time. 

To illustrate the nature of the changes effected by varying the potential correction 
coefficients, we shall consider an algorithm using a nine-point scheme where only 
the cl.0 = co.1 coefficients are nonzero. Potential values due to a charge at mesh 
point (s, t) are modified only at neighboring locations (S + 1, t), (S - 1, t), 
(s, t + 1) and (s, t - 1). The cumulative effect of these altered potentials is followed 
in Fig. 1. 

Figure la shows the assignment of the charge of a rod lying in cell (0,O) to the 
nine nearest neighboring mesh points (boldfaced dots). Mesh points at which 
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potentials are modified are shown boldface in Fig. lb, followed in Fig. lc by mesh 
points at which field values are affected (here, a two-point centered difference 
for the electric field is assumed for the purpose of illustration). Finally, in Fig. Id 
is shown the area over which the interparticle force is influenced; any charge 

d 

FIG. 1. The localized nature of the force shaping resulting from charging coefficient cl0 ; 
(a) charge assignments, (b) potential, (c) electric field, and (d) force. See text for further details. 

lying outside the box symmetrically placed about the cell (0,O) feels a force due 
to the charge in cell (0,O) which is independent of cIsO . Similar representations 
may be sketched for cases where other potential coefficients, charge-sharing schemes 
and difference equations for the field are involved. 

The influence function for the example shown in Fig. 1 is 

G.k*J = i=,J + C&COS(27Tk/N) + cos(27rl/N)]. (40) 

Assuming that e,,, is derived from a “Poisson” equation, 

W s,t = --Ps.t/‘o > (41) 

where D2 is some finite-difference approximation to the laplacian operator, 



352 EASTWOOD AND HOCKNEY 

then the solution to (32) using the modified influence function (40) in (37) is 
equivalent to charge reshaping before solving for the potential using (42): 

or to potential smoothing after solving (41): 

(42) 

(43) 

S,,, is the symmetric sum operator: 

fLJ*s,t = #w + *3+1,t + #s,t-1 + s,t+1 - (3 

Part II. Empirical Results 

We now present a series of empirical results which show numerically the extent 
to which the law of force between two interacting model particles can be shaped 
by different choices of the cloud, the Poisson solver and the potential-correction 
coefficients. We find that the quality of the long-range force is primarily determined 
by the choice of the Poisson solver and that the quality of the short-range force 
is primarily determined by the cloud shape and the potential-correction coefficients. 
In terms of Eq. (39), for a given cloud shape, the long-range force is determined 
by the choice of e,,, and the short-range force by the choice of cSSt . All forces 
are quoted as absolute measures and expressed as fractions or percentages of the 
coulombic force at one mesh distance (=$/27r+). The [absolute measure 
is adopted because the stochastic heating rate, which measures the combined 
effect of all computational errors, is proportional to the mean square value of 
the absolute error in the electric field [18]. 

5. THE LONG-RANGE FORCE 

Four different Poisson solvers have been compared. These can be defined by 
giving the Fourier transform multiplying factor &k,L . 

(a) Truncated - 1 lk2 Fourier Series 

The Fourier transformation of Poisson’s equation with doubly periodic boundary 
conditions gives an infinite Fourier series. The truncation of the coefficients to the 
range of the finite transform leads to the following Poisson solver. 

ekvl = N2/4rr2(k2 + Z2), 0 < k, I < N/2, k = 1 # 0, 

= 0, k = I = 0 and (k2 + 12)112 > N/2. 
(45) 
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This type of Poisson solver, called by Boris the Poor man’s Poisson solver [19], is 
often favored because it is derived directly from the differential equation without 
finite-difference approximations. This advantage is illusory because no account is 
taken of harmonic aliasing in (45) which arises due to the finite sampling of the 
solution by the mesh, and the behavior of the approximation is poor. The finite- 
difference approximations which follow include the effect of aliasing in a natural 
way. Different forms of truncation may be used in Eq. (45). We have chosen a 
truncation that is a function only of modulus of the wave number in order to 
counteract the squareness of the mesh as much as possible. 

(b) Nine-Point Finite Deference 

The nine-point finite-difference approximation to Poisson’s equation [20] is 
represented by the stencil equation: 

in the corresponding positions. 
Applying the finite double Fourier transform to (46) gives 

& = (A + 4)/(4B + 8A - 20), k, I = 0, I,..., N/2, k 

& = 0, 

where 

A = cos(257k/N) + cos(2~rZ/N), 

B = cos(2&/N) cos(257Z/N). 

(c) Five-Point Finite Dlrerence 

Ps,t 9 (46) 
116 213 116 

213 1 0 l/12 0 
213 -lo/3 $,,t = - l/12 213 l/12 
l/6 213 l/6 

5 
0 l/l2 0 

where the matrix of numbers gives the coefficients which multiply the mesh values 

(48) 

The five-point finite-difference approximation to Poisson’s equation is defined 
by the stencil: 

0 1 0 

[ I 1 -4 1 +s.t = - $ p&t ) 
0 1 0 

or the multiplying factor: 

(49) 

cc,,, = 1/(2A - 4), k, I = 0, l,.. ., N/2, k = I # 0, 

Go,, = 0. 
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(d) Diagonal Five-Point Finite DifSence 

The five-point finite difference may be rotated through 45” to obtain the diagonal 
five-point stencil: 

and 

0 112 1:“2 1 0 -2 0 cpset = - 5 (51) 
0 112 

[l;g $ 13 ~8.t 9 

G,,, = (A + 2)/(8(B - 1)). 

We consider the long-range force to be that for which r > 4H, because the 
potential-correction coefficients will be used to shape the force when r < 4H. The 
quality of the long-range force was assessed by observing the force in the model 
between a single positive and a single negative charged particle, and comparing 
this with the exact elliptic-function expression (52) for the force, E(z), between two 
line charges, periodically repeated: 

E(z) = E, - iE, = q2{Z(zl) + (7Ti~~/2KK’)}(2K/L)/2~~~, (52) 

where z, = (L/2 - z)(2iK/L), and z = (X + iy) is the complex separation between 

TABLE I 

Error in the Force between Two Interacting Rods of Charge per Unit 
Length, q, for Different Clouds and Poisson solvers in Units of 10-6(qa/2H&Y) 

Cloud Poisson r = 4H SH 16H 32H 

CIC --I,‘kl 1500 280 
nine-point 610” 71” 

x-y five-point 960 100 
diag five-point 1300 160 

TX -l/k2 730 120 
nine-point 650” 71” 

x-y five-point 820 98 
diag five-point 1200 180 

GSC --l/k2 740 120 
nine-point 650” 71” 

x-y five-point 820 99 
diag five-point 1189 183 

54 29 
10” 2 
12 1” 
23 5 

22 11 
10’ 2 
13 1” 
24 5 

22 10 
9” 2 

12 la 
25 5 

4 Designates the best Poisson solver for each cloud. 
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the particles which have charge per unit length q. K and K’ are the complete 
elliptic integrals of the first kind and L = NH the periodic-repeat distance. Z(z) is 
the Jacobean Zeta function [21]. 

The positive particle was placed on a mesh point and the negative particle a 
variable distance r from it, such that the line between the particles made an angle, 
8, with the x-axis. A square doubly periodic 64 x 64 mesh was used with defining 
vectors parallel to the x- and y-axis. The force was resolved into components F, 
parallel to, and F, , perpendicular to the line joining the particles. 

Table I shows, for three cloud shapes and four Poisson solvers, the maximum 
deviation of F,. and FB from the exact value of Eq. (52). The comparison was made 
for 6 = 0, 11.25, 22.5, 33.75, and 45” at r = 4, 8, 16, and 32H. It can be seen that, 
with the exception of r = 32H, the nine-point Poisson solver is the most accurate 
for all cloud shapes. It is not possible to distinguish between TSC and GSC inter- 
polation, both of which have significantly better long-range behavior than CIC. 
We note also that the truncated -l/k2 Poisson solver is considerably worse than 
both the nine- and five-point finite-difference Poisson solvers, particularly at large 
distances. 

6. THE SHORT-RANGE FORCE 

The short-range force for r < 6H is shown in Fig. 2, the solid lines representing 
the law of force between two particles as measured parallel to the mesh axis (6 = 0), 
and the dotted lines represent the law of force as measured diagonally through the 

; ” 
1 r- I 

NGP 5-PNT 

(b) 

TX 6% GSC .92X 

FIG. 2. Short-range force law. The angular anisotropy of the force law for Merent clouds 
and potential solvers. Solid curve F,(r, O’), dotted curve F,(r, 45’). Force in units of q*/2nc,,H. 
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mesh (B = 45). Measurements have been made at three intermediate angles and 
are found to lie between the curves shown. In all cases the first particle lies on a 
mesh point. Measurements have also been made for eight different positions of 
the first particle in a cell. Different force laws are obtained depending on the 
position of the first particle, however the magnitude of the anisotropy of the 
force is similar to the curves shown which may be considered to be typical for 
the cloud and Poisson solver quoted. 

Figure 2(a) and 2(b) show the short-range force law for the two simplest schemes, 
namely the CIC and NGP with the five-point Poisson solver. In both cases the 
force at one mesh distance varies by 50 % between 8 = 0 and 45”. It is interesting 
that, although the CIC interpolation gives a smoother force law than NGP, it 
does not reduce the large angular anisotropy of the force. Adoption of the nine- 
point Poisson solver reduces the angular anisotropy to 35 %. Figure 2(c) shows the 
force law for UC. We do not show the curve for NGP since this is almost identical 
to Fig. 2(b) except that the first step for 19 = 0 is reduced in height from 1.14 to 0.95. 

Figure 2(d) shows the force law for both the TSC and GSC clouds and the 
nine-point Poisson solver. The two cases differ by less than 0.4 %, and it can be 
seen that the adoption of nine-point charge-sharing and Poisson approximation 
has reduced the angular anisotropy to -6 % (6.6 % for TSC and 6.2 % for GSC). 

7. THE POTENTIAL-CORRECTION COEFFICIENTS 

The effect of introducing the short-range potential-correction coefficients is 
shown in Fig. 3. The two cases shown both use the GSC and nine-point Poisson 
solver. Case (a) uses two independent coefficients (co0 = 0.226 and co1 = cl0 = 

(a) (b) 

FIG. 3. Potential Correction. The improvement in the isotropy of the force resulting from 
the use of two and eight potential-correction coefficients. Solid curve is the force in the model. 
Dotted curve is the exact force between line charges. Force in units of qa/2ncoH. 
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0.140) and the anisotropy of the force, as measured by F,(45”) - F,(O”), is reduced 
from about 6 % to about 1 %. The F0 is similarly reduced to less than 1 %. The 
resulting force law starts from zero at r = 0, rises to a maximum value of 
Fr = Fm,, at r = W, and then joins smoothly into the exact elliptic-function 
expression (dotted line). Such a force law is characteristic of the interaction between 
two clouds of charge of width Wand approximately uniform density. In Case (a) 
we have produced a good approximation to the interaction between clouds of 
width W = 2.4H and F,,, = 0.33. In order to obtain a further significant 
reduction in the anisotropy, it is necessary to introduce eight independent 
coefficients: 

co.0 = 0.2804, c”,~ = cl,0 = 0.2698, C I,1 = 0.1775, 
co.2 = c~,~ = 0.0213, Cl,2 = $1 = 0.0878, cpz = -0.0443, 

co.3 = c~,~ = 0.0067, Cl,3 = cg,l = -0.0351. 

With these coefficients the error in the force is reduced to less than 0.5 % as 
shown in Fig. 3(b). The resulting particle width is W = 3.3H and Fmax = 0.257. 
The model with these coefficients has been previously described as the Quiet 
Particle Mesh (QPM) model and has a stochastic heating rate less than one 
hundredth of the CIC five-point model [22]. 

The above correction coefficients were obtained by the following least-squares 
procedure. FT(r, 8) and F@(r, 0) are measured for r/H = 0.5, 1 .O ,..., 6.0 and 6’ = 0, 
11.25, 22.5, 33.75 and 45”. The following constraints are applied: 

along 0 = 11.25, 22.5, 33.75”, 

Fdr, 0) - FT(r, 0) = 0, 
and 

Fdr, 67 = 0, 

along 8 = 45” 

(53) 

FJr, 45) - F(r, 0) = 0, 0.5 < r/H < 3.5, 

F?(r) 45) - ET(r) = 0, 3.5 < r/H < 6.0. 

The resulting 88 equations for two or eight unknowns, respectively, were solved 
by least squares using the IBM SSP Library routines APFS and APLL. 

The spatial averaging over different source points (JJ dx,, dy, in Eq. (35)) was 
achieved by determining the coefficients for nine different positions for the source 
particle and subsequently taking the area average of the coefficients. The positions 
used for the source particle were the cell center, the four corners of a cell, and the 
center of the four sides of a cell. 
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In the PPPM model [22] an arbitrary force is added to the above mesh force 
when the particle separation r < a = 4H. For this reason it is only important 
that the mesh force be independent of 19 for r < a, the form of the dependence 
on r being unimportant. For r > a, it is important that the force be a good approxi- 
mation to the coulombic force. For Case (a) we find that deviation from the exact 
force is less than 0.9 % and for Case (b) less than 0.43 %. For r > 6H the potential 
coefficients no longer influence the force of interaction and the values in Table I are 
appropriate. 

8. POINTS-IN-A-PLANE FORCE LAW 

The above procedure for shaping the r-l force law between infinitely long rods 
of charge has been applied equally successfully to the r-2 force law of point charges 
confined to move in a plane. Such a force law is required in the study of surface 
films of electrons on liquid helium [23] and the interaction of ions in planar sheets. 

The Fourier transform potential solver (37) was used with C? chosen to give the 
exact potential at mesh points for a distribution of charge given only on the mesh 
points. Correct account was taken of contributions from all wave-number aliases. 
The potential-correction coefficients for use with the GSC were: 

c o,. = 0.4284, co.1 = Cl,0 = -1.0985, q1 = -0.8949, 
co,, = c2,0 = -0.1585, c1,2 = c2,1 = -0.2491, c2,2 = -0.0192, 

co,3 = c3,0 = -0.0321, Cl,, = C3,l = 0.0982. 

With these coefficients the force anisotropy is less than 0.15 % of the force at one 
mesh distance (= q2/4mo,H2). 

CONCLUSIONS 

A unified hierarchical theory has been presented for the shaping of the force 
law by the selection of charge-sharing and force-interpolation schemes. The first 
two terms in the hierarchy are the familiar NGP and CIC schemes, followed by the 
triangular shaped cloud (TSC). Empirical results are given showing that the TSC 
and the closely similar gaussian-shaped cloud (GSC) reduce the angular anisotropy 
of the force law from about 50% for NGP and CIC to about 6 %. A further 
reduction of the anisotropy is obtained by introducing potential-correction coeffi- 
cients which modify the multiplying factor used during the solution of Poisson’s 
equation. Results are given using two and eight coefficients which reduce the 
anisotropy further to 1 and 0.5 %, respectively. 
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